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Abstract

The dynamical spin structure factor $*(Q, w) in the small momentum region
is derived analytically for the one-dimensional supersymmetric /—/ model with
1/r? interaction. Strong spin—charge separation is found in the spin dynamics.
The structure factor S%*(Q, w) with a given spin polarization does not depend
on electron density in the small momentum region. In the thermodynamic
limit, only two spinons and one antispinon (magnon) contribute to S*(Q, ).
These results are derived via solution of the SU(2,1) Sutherland model in the
strong coupling limit.

PACS numbers: 71.10.Pm, 05.30.—d, 75.10.Jm

1. Introduction

Spin—charge separation is a key subject in one-dimensional interacting electron systems.
Conformal field theory has succeeded in the description of spin—charge separation in the
low-energy physics of the Tomonaga—Luttinger liquid. Beyond the conformal field theory
limit, exactly solvable models provide us with opportunities to obtain analytical knowledge on
thermodynamics and dynamics, and it is intriguing how the spin—charge separation appears in
these properties.

Among exactly solvable models, the supersymmetric +—J model with 1/72 interaction [1]
reveals the spin—charge separation in the simplest manner. The Hamiltonian of this model is
given by

Hiy = Z —tij Z (E’jaﬁj(, + h.C.) +Jij <Si -5 - %I’l,‘ﬂ_,‘) —h Z Sz, (1)
J

i<j o=t.1
where ¢;, = cis(1 — n; _,) with ¢;, being the annihilation operator of an electron with
spin ¢ at site 7, and n; = Za”i,a = Zacj'acm. The spin operator associated with site
i is defined as S; = Zmﬁc}a(ai)aﬂciﬁﬂ where o = (0%, 07, 0%) is the vector of Pauli
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matrices. The transfer energy f;; and exchange one J;; are given by t;; = J;;/2 = tDi;2
where D;; = (N/m)sin(z(i — j)/N) with N being the number of lattice sites. Henceforth
we take ¢ as the unit of energy. We note that this 7~/ model reduces to the Haldane—Shastry
spin chain model [2, 3] at half-filling. In the supersymmetric 7~/ model with 1/r2 interaction,
exact thermodynamics can be interpreted in terms of free spinons and holons [4, 5]. At low
temperature, the spin susceptibility is independent of the electron density 7, and the charge
susceptibility is independent of the magnetization m. These features are referred to as the
strong spin—charge separation [4]. In addition, the fact that the magnetization /m for a certain
range of % is independent of 7 can be regarded as the strong spin—charge separation. Namely,
m is determined by # as follows:

m_{1—,/1—2h/n2, for 0 < h < h, @

i, forh > h,,

where h. = (2 — )2 /2 [6].
The strong spin—charge separation appears also in dynamics at zero temperature. The
dynamical spin structure factor is given by

S0, w) = Y |(vIS510) "8 — E, + Eo). 3)

where SZQ =>,5 ¢'? /\/N. Here |v) denotes a normalized eigenstate of the Hamiltonian
with energy E, (E( being the ground state energy). In the absence of magnetic field (4 = 0),
the dynamical spin structure factor was exactly obtained at 7 = 1 [7-9]. It was numerically
demonstrated that the weight of the dynamical spin structure factor in the /—/ model does not
depend on 7 in the region where only two spinons contribute [10]. This is an indication of
the strong spin—charge separation in dynamics. Later, a mathematical poof was given to this
statement, and the analytical expression of the dynamical spin structure factor for 7 < 1 was
obtained in the full (Q, w) space [11].

A numerical study [12] also showed that the strong spin—charge separation for §%(Q, w)
can be extended to the case of finite magnetic field (4 # 0). Namely, at fixed magnetization,
S%(Q, w) away from half-filling is the same as that for half-filling (i.e., the Haldane—Shastry
model), in the region where only spinons and antispinons contribute. For /& 5 0, the full exact
results on S¥*(Q, w) have not been obtained even in the Haldane—Shastry model. However, if
the momentum is restricted to Q < mm, the dynamical structure factor S%*(Q, w) at7i = 1 can
be expressed as the dynamical density—density correlation function of the Sutherland model
with coupling parameter § = 2 [13, 14]. In order to give this expression, we assume the
positive magnetization /m without loss of generality, where m = i1y — iy with i, = Ns/N
(N, being the number of electrons with o-spin). In the thermodynamics limit, we have the
following expression®:

Q2 w(l—m) w(l—m) Tm 2
S“(Q,w)=—/ dq/ dq/ dg. 8 { Q —qa— ) 4,
4 0 1 0 2 o a a ; J

2
lg91 — g2l€a(ga)
X8| w—€lg) — Q) &(q)) | =3 > ;
; [T=1(qa+29)* [Tj=; &g/

where €(g) is the spinon spectrum: €,(g) = q(vs — q), and €,(g) is the antispinon spectrum:
€.(q) = q(vs + q/2), where vy = (1 — m). The purpose of this paper is to prove that

“4)

3 For the expression of $%3(Q, ) in [14], the authors erroneously typed the integration ranges of the spinon momenta
qii=1,2)as0 < g; <miiy. They should read 0 < g; < 7 (1 — ), as shown in equation (4).
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the analytical expression of S**(Q, w) away from half-filling is the same as equation (4),
if 0 < QO < min[z/m,wa,]. This yields a mathematical proof of the strong spin—charge
separation in magnetic-field dynamics. We stress that the use of the replica type technique is
crucial for calculation of the matrix element in S (Q, w).

This paper is organized as follows. In the next section, we introduce the SU(2,1)
Sutherland model as an auxiliary. As in the previous study of thermodynamics [4, 5, 15, 16]
and dynamics [8, 9, 17, 18], we take the limit 8 — oo of the coupling parameter in order to
obtain the analytical knowledge of the 1/r? supersymmetric #—/ model. The eigenfunctions
of the Sutherland model can be expressed in terms of Jack polynomials. We discuss the basic
features of the Jack polynomials. In section 3, we derive the matrix element of the dynamical
spin structure factor based on the replica type technique [19]. In section 4, we present the
analytic expression of S¥*(Q, w) for finite systems. Section 5 is devoted to a summary. In
appendix A, we derive the dynamical charge structure factor N(Q, w) in the same method.
In appendix B, we show the comparison with numerical results for small size systems [12].
In appendix C, we present the results on the static structure factors S**(Q) and N (Q).

2. Sutherland model with SU(2, 1) symmetry

In this section, we introduce the Sutherland model [20-23] with SU(2,1) symmetry [24], and
review the basic properties.

2.1. Notation

We follow the notations of [25-27]. For a fixed non-negative integer n, let A, = {n =
M, M, ..., )N € Zzo, 1 < i < n} be the set of all compositions with length less than
or equal to n. The diagram of a composition n = (1, M2, ..., Ny) € A, is defined as the
set of points (i, j) € Z* such that 1 < j < ;. The weight ||| of a composition n = (1,
M, ..., Nn) € Ay is defined by ||n|| = Y ", n;. The length [(n) of n is defined as the number
of non-zero 7; in 1. The set of all partitions with length less than or equal to » is defined by
A ={r= 01,22, h) € Aylhy = Ay = -+ 2 &, 2> 0}. We also denote a partition A by
am«p™ e ... or by (@™, b™, c™,...) witha > b > ¢ > --- > 0 where m; is the number
of parts which are equal to i. The conjugate partition A" of a partition A is a partition whose
diagram is the transposition of the diagram of A. Hence A; is the number of nodes in the ith
column of the diagram of partition A. In particular we have 1| = [(1). We define the subset
Ar= of the set A by AT ={h = (A1, A2, ..., Ap) € Aplhp > Ay > -+ > A, > 0} I}Iote
that for any element A € A}~, there exists unique partition & € A} such that A = u +6(n)
withd(m)=m—-1,n=2,...,1,0) € A}~ For two distinct partitions A, u € A}, we define
the dominance order A < p if ||| = |||l and Zf‘:l A < Zf;l w; forallk =1,...,n.
For a composition n € A,, n* denotes the unique partition which is a rearrangement of
the composition n. Now we define a partial order < on compositions as follows: for
v,n € A,,v < nif v* < n* with dominance ordering on partitions or if v© = »* and
Zle v; < Zle n;forallk=1,...,n.

For a given composition n = (1, n2,...,1,) and s = (i, j) in the diagram of the
composition 1, we define the following quantities:
ay(s) =n;i — J, &)
a;(s):j—l, (6)
Ls)=#ke{l,....i —1}[j <m+1<mt+#keli+],....n}j < <mil (7
L) =#ke{l,....i = Wm=n)+#keli+1, ... n}ln > n} )
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Here, for a set A, #A denotes the number of elements. The quantities a,,(s), a;] (s),I,(s) and
1, (s) are called arm length, arm colength, leg length, and leg colength, respectively. Since
l/ (s) does not depend on j, we also denote it as l/ (). Note that for a partition A € A}, w
have

Li(s) =) —i, 9)
L(s)=1i—1. (10)

Further, for a composition n € A, and real parameters » and y, we define the following
quantities:

friy) =[[@)s) = ri)(s) +y). (11)
sen

dy(r) = H(an(s) +1+r(l,(s)+1)), (12)
sen

dy(r) = [ J(@y(s) + 1+ 71, (s)), (13)
sen

hy(r) = l_[(an(s) +7r(l,(s) +1)), (14)
sen

o, = [T ) —ri;). (15)
s#01)

2.2. Sutherland model and Jack polynomials

Following [14, 17], we formulate the dynamical spin structure factor S**(Q, w) of the 1/ r2
supersymmetric -/ model based on the freezing technique [15, 16].

As an auxiliary, we introduce the Sutherland model [20-23] with SU(2,1) supersymmetry
[24]:

1 32 BB+ Pi))
Hes = oM Z ax? ( ) Z sin? 7 (x; —jx i) (16)

The system has Ny, holes, Ny up-spin electrons and N , down-spin ones, whose coordinates
are represented by xl.h for the ith hole, )ciT for the ith up-spin electron and xf for the ith

down-spin electron. We arrange them as x = (x1, X2, ..., xy) = (x], ..., x}y xbo, x,{,w
xlT e XITM) = (x", x¥, x1). Here the graded exchange operator is defined as

5 aff Ba

PiJZZXi X 0p, A7)

op

where X f “ is the Hubbard operator which changes from state o to 8 at site j, with o, 8
being either 4 (hole state), or one of o =%, |. The sign factor 0 is —1 if B = h and
1 otherwise. In order to reproduce the lattice model, we take the limit of large 8 and M,
keeping the ratio t = /M fixed. Then the particles crystallize with equal distance from
each other, and the resultant dynamics excluding phonons and uniform motion of the centre
of gravity is mapped to that of the /—/ model given by equation (1). It can be shown that the
intensity of the phonon correlation is smaller than the spin correlation by a factor of O(87").
Here we take the lattice parameter L/N as the unit of length. Then we have the following
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relation:

HCS—)tZDi;ZISij. (18)

i<j

For fixed numbers of (N, N4, N}), the right-hand side of the above relation is the #—/ model
given by equation (1) with a trivial constant shift. Note that the symmetry of the wavefunction
leads to the relation s;; P;; = —1, where s;; represents the exchange operator of the coordinates
of particles i and j. The interval I = [1, N] denotes {i € Z | 1 < i < N}. We define
Ih = [1, Nh], I¢ = [Nh + 1, Nh + Ni] and IT = [Nh + Ni + 1, N] The wavefunction of the
ground state for a set of (Ny, N, Ny) is given by

o= T1(-2) 11 1 (-2)" 19

i

i#jel o= i#jel,
where the complex coordinates z = (zj,...,zy) are related to the original ones x =
(x1,...,xy) by z; = exp(2mix;/L). The spectrum of the Sutherland model is conveniently

analysed with the use of a similarity transformation generated by
o_ 1_[ (1 B ﬁ)13/2 1_[Z(NT_l)/2 (20)
N . i ; i '
i#jel iel

The transformed Hamiltonian H = O~ "HcsO is
L1 2N, N—1 Np—1)?
d; — . 21
=om ( ) ; ( 3 2 ) @D
Here ci ; is called the Cherednik—Dunkl operator [28, 29] and is given by

di= 25— ,32 l—s,k>+ﬁZ

i<k

It is known that d; can be diagonalized simultaneously by homogeneous polynomials. In terms
of the monomial z¥ = z|'---z)', the resultant eigenfunctions E,(z; B) can be expressed as
E,(z; B) = 2" + lower terms (triangularity), and are called nonsymmetric Jack polynomials
[30, 31]. Here ‘lower terms’ means a linear combination of the monomial z" such that v < 7.
The eigenvalue #); of E,(z; B) for d; is given by 7j; = n; — ﬁl;(i) fori =1,..., N.

Since we are dealing with identical particles, the eigenfunction should satisfy the following
conditions of the SU(2,1) supersymmetry:

1—Sik)+ﬂ(1—i)~ (22)

l

(i) symmetric with respect to the exchange between z!'’s;
(ii) antisymmetric with respect to the exchange between z7’s with the same o.

By taking a linear combination of E, (z; §), we can construct a polynomial K, (z; ) with
SU(2,1) supersymmetry [26, 32—-34]. The above triangular structure of E; (z; B) is inherited
to K, (z; B). We specify the set of momenta as A = (A", A}, AT) € Ay, where A" € A%,
and A% € A}~ (0 = 1, |). For the ground state, we have A = Ags = (Ags. Aés, )‘g;s) with

—1\ N, ~ — N 3 .
s = ()™ ads = BV + (B52)™) and Aks = (V) (see figure 1). K (z; B) is
normalized so that the coefficient of the monomial z* is unity.

We define the inner product of functions f(z) and g(z) in n complex variables,
z=1(z1,22,...,2n) as follows:

fg)ﬁ—nﬁlz

[T 1z —al?. (23)

1<k<I<n
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Ny—N; N -1 N -1 N;—N| N —1 N —1
2 2 2, 2 2 2,
< > > < d . R »
1
| v |
Ny 1 ! Ny |
1 ! 1
1 ! 1
_ N | -
2 ‘ { ! ‘ i
l
| ! |
N, l 1 N
| l
| l
| l L
l
: ! [
: mmEw s
M r»/

i

Acs

A,

Figure 1. The diagrams of the ground state with (N, Ny, N, Ny) = (26,4,7,15). Ags =
(4*,47,019) + (3*,5(7), 5(15)) (left) and s = (3*,8(7)) (right).

where f(z) denotes the complex conjugation of f(z). We give some examples of the

SU(2,1) Jack polynomials. For the case of N, = N, the polynomial K (z; 8) ()» € A;'V)

reduces to the (monic) Jack polynomial P (z, 8). The antisymmetric Jack polynomial

Pz, B+ T jes (zi — 2)) is given by K5 (2, B) (A € A}y) with (Ny, Ny) = (0, 0). The
SU(2,1) Jack polynomials are orthogonal with respect to the above inner product [34, 35]:
8 CINB+ 1] Np!N4y NV A (B)  fi(Bs 1+ BN)

<K)u K/L)N = Oxn N X s

L +1] px(B)  d(B) fr(B;1+B(N — 1)

for compositions A, u € Ay X A1+v'¢> X A;’V: C Ay. Here p,(B) is given by the product

p(B) = pM(B)p) (B)p} (B) with

(24)

h )\,‘—)_Lj+,8
PL(B) = — = (25)
* i(Jl,_GIIh N— A
Xi— X —
s B =[] # (=11 (26)
i<jel, ! J

The operators nhQ = Zj X?O e'%///N and ng = Zj X7° e'%/ /\/N can be expressed for
Q =2mm/N as nlb =ph / VN and ny = pm / VN, respectively. Here we have introduced
power sums p% = Y . 1, 2 (@ =h,1,]). In the lattice model we have the completeness

relation — X77+X ?0 = 1. Therefore, in order to calculate S%*(Q, w), we need to know

two types of the expansion coefficients, ck and ci, which appear in

PrKigs = Y hKu (23 B), 27)
s

PhKigs = Y i Kz B). (28)
A

Using these coefficients, in the lattice limit (8 — 00), the spin operator Sj can be expressed
by S; = (XJT,T - Xj“)/Z =1/2- X(}O/Z — Xj“. Therefore for O > 0, we have the following
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Ny—N, N,—1N -1 N; - N, N -1 N -1
2 2 2, | 2 2
i - — —
1 n KT
: A .
Ny ! ! Ny !
1 ! 1
1 ! 1
| A
g |
= B
I
Ny | : N,
| |
L E
| |
[ T
‘ "
Ny
l—»;
)\ 13

Figure 2. The diagrams that appear in the expansions (27) and (28) under the conditions
(30) and (31) (the small momentum region). These diagrams correspond to the case with
(N, N, Ny, Np) = (26,4,7,15). A = Ags + (0", v%, 0V1) (left) and o = s + (W1, v*) (right)
with V" = (1,0%) and v* = (12, 0%). The diagrams Ags and pgs are shown in figure 1. The
diagrams shown in this figure do not contribute to S**(Q, w), owing to vt = (1,0M~ 1) (see
equation (45)).

relation:

0wy Ly (b SY KKy
S7(Q, w) = Ngj(cﬁ 2) (KAGS,KAGS)N(S(CO AE)). (29)

For Q = 0, there is a finite intensity only at @ = 0, which is given by Nm?/4. It is difficult to
derive c})} and ci for general values of Q = 27m/N. In the next section, we show that there
occurs a drastic simplification in the small momentum region.

3. Matrix element

In the small momentum region, we have some special properties that the calculation for
the expansion coefficient and norm can be essentially reduced to those of symmetric Jack
polynomials [27]. First we summarize the necessary formula to evaluate the expansion
coefficients ci and CR. Next we obtain the expansion coefficients by the use of the replica type
technique [19].

3.1. Small momentum region
We consider the case where the following two conditions are satisfied:

m < (Ny —Ny)/2, (30)
m< (N, —1)/2. (31)
(Note that these conditions constitute the small momentum region.) In this region, owing

to the triangular structure of the polynomial K, (z, ), the composition A contributing to the
summation (29) is restricted to the form A = Ags + (", v, 0M) (see figures 1 and 2). We
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define ugs = (ulks, nés) with ulis = ((X52)™) and pés = 3(N,). Under conditions (30)

and (31), by extending a calculation by Baker and Forrester [32], we obtain the following
relation:

_ oy
Kip=K.zp) [] 57 [ G—2p). (32)
jehuly i<jel

where 8/ = B/(B+1),u = (ugs, /Lés) + (") € Ay, X AX,T and 7 = (z" z'). Here
K «(Z; B') is a Jack polynomial with SU(1,1) supersymmetry, which is a linear combination of
Ny + N, variables non-symmetric Jack polynomials E, (Z; 8). The polynomial E, (Z; 8’) can
be obtained by substitution z; = 0 for j € [Ny+ N +1, N]inN variables non-symmetric Jack
polynomial E,(z; /). The SU(1,1) Jack polynomial K ,(Z; f) is symmetric with respect to
the exchange between z}”s and antisymmetric with respect to the exchange between zil ’s. For
the composition jgs, the SU(1,1) Jack polynomial K ., (Z, B') is independent of the parameter
B’, and is explicitly given by

Russ@B) =127 T @ —2p. (33)

jely i<jel,

Under conditions (30) and (31), the norm of the above states can be reduced to the following
form [27]:

i & \F ” / 7
(Ko Ko (K Kyw,  dL(B) ("5 BNy
B~ g = \F - " . _
<K)»Gs’ chs)]v (KMGS’ K“GS>Nh+Nl hon(B") fun(B”; 14 B"(Ny — 1))

o di (B fu(B's B'(N, + B"Npn))

hys(B) fis(B's 1+ B/ (N, + BNy — 1))’

where B/ = B//(B'+1) =B/2B+1)and B’ = B’ +1 = (2B +1)/(B +1). We remark that
for monic symmetric Jack polynomials P; (z, B), the following relation is obtained [25]:

(P Py 4B fi(B:i BN)

(L, 0k h(B) filBs1+B(N = 1)
Relations (32) and (34) hold if both the conditions 0 < A; < Ny — 1 for j € I, U I, and
A= )“(T}s are satisfied. However if equations (30) and (31) are not satisfied, the K, without
satisfying equation (32) may involve in the summations (27) and (28). In the strong coupling
limit (8 — 00), the parameter 8’ = 8/(B + 1) approaches unity. In this limit, the eigenstates
satisfying the above conditions ‘0 < A; < Ny — 1for j € L, U I, and A" = )”(T}s’ are SU(2,1)
Yangian highest weight states (YHWS) [36] in the 1/72 supersymmetric #~J model, which can
be mapped to that of the SU(1,1) Sutherland model with coupling parameter § = 1 [37]. As
employed in [27, 38, 39], if the excited states are restricted within the YHWS, the derivation
of the correlation functions can be reduced to that for the Sutherland model with SU(1,1)
supersymmetry. We would like to stress that if the small momentum conditions (30) and (31)
are not satisfied, non-YHWS may contribute in the excited states of S**(Q, w).

(34)

(35)

3.2. Replica type technique

Using the replica type technique [19], we derive the analytic formula of the coefficients ¢! and
ci. For indices « = h and |, we define the quantity Z*(0) as follows:

ze0) = [ —ezp. (36)

Jely
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For any real parameter u, we have the following relation:

S o
(2%0)" =exp | u Z In(1 —e™z;) | =exp (—u Z e—"""il—’”) )
jely m=1

By use of the above relation, the expansion coefficients ¢§ (o = h, |) in equations (27) and
(28) are given by

o (K (pf Kl 110 (K (Z40))" Kigs )y -
y = = T s
(Kx, K2)y u=0 i u 96 (Kx, K2) =0

where momentum conservation ||A|| — ||Ags|| = m is satisfied. We introduce the similar type
of expansions for the SU(1,1) Jack polynomials:

PR Z ) =) EhK,.G B, (38)

n
PhKues G B) =Y LK, ). (39)

12

In a similar manner, the expansion coefficients of Efj (¢ = h, |) in equations (38) and (39) are
given by

~ o u R 8
11 (K O R sy,
clﬂi = hm T_ﬁ ~ ~ B ) (40)
u—0 11U <KM’ K/"'>Nh+N¢

6=0
where ||l — [lucsll = m.

Under conditions (30) and (31), by use of equation (32), for given compositions
A= Aigs+ (WM, V5, 0M) and u = pugs + (WP, v*), * we can show the relation’

= (@=h) (41)

This relation means that the expansion coefficients for the SU(2,1) Jack polynomials can be
expressed by those for the SU(1,1) Jack polynomials, provided the conditions (30) and (31)
are satisfied.

Next, for given parameters (p, g), we consider the following expansion:

(ZO0)"(ZH0)K s G B) = D xu(BIK u(E: B). (42)
"

The formula of the expansion coefficient x, (8") for arbitrary u has not been proved yet.
However, in the small momentum region, we have a formula for x,(8’). For u = pugs +
(v, v®), we have the following relation [27]:

S =P+ frB—9)
d(B") di(B)
By use of equations (40) and (43) with (p, g) = (0, u), we can obtain the coefficient ci. For
A = Ags + (W, v%, 0M), it is given by
[O0, x fo(B50)  fn(B":0) x [0]]
d(B")ds(B") d, (B, (B")

4 The v" and v*® are the partitions with v € Ay, andv® € A;’w, respectively.

Xu(B)) = (43)

¢t =—p"m , (44)

5 Inthe strong coupling limit 8 — oo, we have 8’ — 1. For YHWS, equations (34) and (41) reflect the equivalence
between the freezing approach and mapping of the eigenstates of the 1/r2 supersymmetric /—J model into those of
the SU(1,1) Sutherland model.
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where m = |v"|| + [|v*||. In a similar manner, we can derive the coefficient c)\ (see
equation (A.3)). The first term in equation (44) can then be represented by ,BHC}}:, which
vanishes unless v® = (0"*). We consider the quantity c; = ci + B¢, which is nothing but
the second term of the right-hand side in equation (44). Owing to the factor f,n(8”; 0), the ¢,
vanishes unless v" = (0™). Therefore, the ¢, can be simplified as
ol

o= ||VS||dES(% X B(ymy, (0N - (45)
We notice that while ci is related to the expansion coefficients for the SU(1,1) Jack
polynomials, the quantity ¢, given by equation (45) is related to those for the monic symmetric
Jack polynomials. In fact, for the monic symmetric Jack polynomials, one has the following
formula [40]:

0
sz —mx Y D (]/;) Pz B). (46)

AEA}

A=
In the strong coupling limit (8 — o0), we have 8” — 1/2, and therefore the c; approaches
Cx +c; / 2. This is precisely the quantity which appears in S*(Q, w) (see equation (29)).
Thus, no charge excitation contributes to §%*(Q, ) in the small momentum region. Since we
have B/ — 2 in the limit 8 — oo, the coefficient ¢, vanishes owing to the factor [0]/3;, if
partition v* contains s = (i, j) = (2, 3). Then, S**(Q, w) is determined by three parameters
(Aas Asi, Asp). Partition v* is restricted to v8 = (A, 24271, 121~%2 ONi=%s1) These three
parameters are related directly with momenta of the elementary excitations: one antispinon
and two spinons.

4. Results
Using relations (34) and (45), we can express S°(Q, w) in terms of three parameters

(Aa, As1, As2). In the small momentum region (see equations (30) and (31)), we obtain the
following expression:

2
S¥(Q,w) = ;l— Z S 8@ — AE )My — 1D(Aa+ N — (Ny — Ny) — 1)

Ast Zh,ha
1\ £ 1
x ()»sl _)‘52“'5)]1:[()» +2hsj — J — D+ 245, — j)
2 Plag — AP NN g
[Tl e ] “
j=1 F[)‘w - T]F[7 - 2 At ]

where Q = 2mm /N and ||V¥|| = A, + Z?:l()‘sj — 1). The excitation energy AE) is given by

(2’ N Ny=N, 3,
sei=(5) |2 (5 - M5 45)

2
N Ny—N, 1
+§ A L g+ —=]]. 43
2. ,(2 5 sjitJ 2> (48)
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w/t

Figure 3. S*(Q, w) for (N, Nn, Ny, Ny) = (16,0, 10, 6) (left) and (16,2,9, 5) (right). Each
spectral weight is proportional to the area of the oval. For dark shaded ovals in the right figure,
excitation energies and spectral weights agree with those in the Haldane—Shastry model (the left
figure), which can be expressed by equations (47) and (48).

6rw/t Orw/t

Figure 4. $%“(Q, w) for (N, Ny, Ny, N}) = (16,0, 12, 4) (left) and (16, 2, 11, 3) (right). For
dark shaded ovals in the right figure, excitation energies and spectral weights agree with those in
the Haldane—Shastry model (the left figure), which can be expressed by equations (47) and (48).

In the case of Ay, = 0, where only one spinon is excited, we need to modify the above results
as follows:

520,y = L TLIMTa + P[5 = 253 4 1J0[5 = 255 —daeg]y o
PN Tl Iy - BRI - B ] ’
(49)

where Q = 27Xy /N. The excitation energy AE; is given by (A1, As2, Aa) = (A41,0,2)
in equation (48). We have checked the validity by comparison with numerical results up
to N = 16 [12] (see appendix B). In figures 3 and 4, we show the results for N = 16.
From comparison with numerical results, the analytic expression of the two-spinon plus one-
antispinon contribution can be applied in the wider range of (Q, w) (see appendix B). The
analytic expressions (47)—(49) coincide with those for the Haldane—Shastry model [14]. From
the above results for finite systems, we can derive the analytic expression of S%(Q, w) in the
thermodynamic limit (see equation (4)). Note that the contribution in the case of Ay, = 0
vanishes in the thermodynamic limit. Thus we have proved analytically that in the momentum
region 0 < Q < min[nm, kg, ], the structure factor $%*(Q, w) is not affected by hole doping.
Here kg, is given by mii,. In this region, S(Q, w) diverges as (v — €,(Q))~'/2, as the
frequency approaches the lower edge corresponding to the spinon dispersion w = €,(Q). The
obtained §%*(Q, w) has the same form as the dynamical density—density correlation function of
the spinless Sutherland model with coupling 8 = 2 except the momentum range [41, 42]. For
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0 < Q < min[nm, kg, ], the static structure factor $**(Q) can be evaluated by the integration
[ dw $%(Q, w), which reproduces the expressions presented in appendix C.

5. Summary

By use of the freezing technique on the Sutherland model with SU(2,1) supersymmetry and the
replica type technique, we have obtained the dynamical spin structure factor S**(Q, w) with
O < min[wm, kg ;] in the supersymmetric -/ model with 1/ r? interaction. The S¥(Q, w)
has the same form as that of the Haldane—Shastry model in this small momentum region. In
the thermodynamic limit, two spinons and one antispinon contribute to S**(Q, w). Therefore,
S¥(Q, w) is not affected by hole doping in this region. Thus we have proved the strong
spin—charge separation in S**(Q, w), which was numerically obtained in the previous paper
[12]. From comparison with numerical results, we have found that the analytic expression of
two-spinon plus one-antispinon contribution can be applied to the wider range of (Q, w).
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Appendix A. Dynamical charge structure factor N(Q, w)

We derive the dynamical charge structure factor N(Q, w) for Q < kp | ® by use of the replica
type technique [19]. The N(Q, w) is defined by

N(Q, @) =) |(vlngl0)*8(w — Ey + Eo), (A.1)

where ng = ), ny ¢'?'//N. As in our previous study [17], using the expansion coefficient

ck in equation (27), the dynamical charge structure factor N(Q, ®) can be expressed as

1 K, K
Vo= SO,

A

8(w — AE}). (A.2)
’»GS)N
for the momentum Q > 0. Using the replica type technique [19], we can obtain the coefficient
cli. By use of equations (40) and (43) with (p, ¢) = (u, 0), the expansion coefficient cl; can
be derived as

[0 x fu(Bi0) (o),

Go=m d‘/}h(ﬁ”)dl/)s(B,) - md;h(ﬁ”) (), (0M )
in the small momentum region m < (N, —1)/2. Here we have used the property
that f,s(B’;0) vanishes unless v* = (0). In fact, as shown in [17], the excited
states contributing to N(Q, w) in this small momentum region are restricted to the case
where L = Ags + (WP, 0™, 0M). In this case, the SU(2,1) Jack polynomial K, (z, 8) in
equation (27) has a form K, (z, B) = P (2", B”) x K ras- Therefore the coefficient c},{ can be
derived via equation (46) as well. Namely, the use of the replica type technique is not essential
for the derivation of ¢! in contrast to the case for ci. The norm can be evaluated by the
reduced formula equation (34). In the strong coupling limit 8 — o0, the coupling parameter

(A.3)

6 For the derivation of N(Q, w), the condition Q < 77, i.e., equation (30) is not necessary.
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Table B1. Comparison between analytic results and numerical ones [12] for (N, Ny, N4, N}) =

(16,2,9,5).

(X1, A2, Aa) g/ o]t i), (analytic) i (numeric)
(1,0, 1) x % (=0.848169) 2 (=0.034090 90) 0.034.090 80
(2,0, 1) : 9% (~1.38791) &5 (0.0505050) 0.050 504 42
1,1,2) %(:1.85055) 2 (0.02462121)  0.02462107
(3,0, 1) 3 % (21.61923) 25 (~0.06926406)  0.069263 59
2,1,2) % (2.39029)  23(~0.036931818)  0.03693162
1,1,3) %(:3.007 15)  35(=0.01988636)  0.01988634

! .. .

2,2,2) 572 (~3.08425) a5 (=0.00200617)  0.00200648

B” becomes 1/2. In the thermodynamic limit, the dynamical charge structure factor N (Q, w)
for 0 < Q < kg, can be expressed as [17]

02 21 —4kp kr,, kr,, 2
Voo = [ g [T da [ das | 0-an- Y0
0 0 X
j=1

0

2
lg1 — q21€an(qan)
X8| w—en(gan) — ) enlq;) ,
; 1= Ven(@) (24 + qun)?

where the Fermi momentum kg is given by kg = mii/2, en(g) is the holon spectrum:
en(q) = q(v. + q) and €4,(q) is the antiholon spectrum: €;n(g) = g(ve — q/2). Here
the charge velocity v is v. = (1 — 7). This expression has the same form as the dynamical
density—density correlation function of the spinless Sutherland model with coupling parameter

B =1/2.

(A4)

Appendix B. Comparison with numerical results

We make a comparison between analytic results and numerical ones in S**(Q, w) [12]. In
tables B1 and B2, we present the cases (N, Ny, Ny, N) = (16,2,9,5) and (16, 2, 11, 3),
respectively. Our analytic proof is restricted to the case where Q < min[kg , wm]. However,
the analytical expression of the two-spinon plus one-antispinon contribution can be applied in
the wider range. As a result of hole doping, the integration ranges of the spinon momenta in
equation (4) are changed to 0 < g; < kr,; fori = 1 and 2. From comparison with numerical
results [10, 12], we find that a similar fact occurs also in the N(Q, w). Namely, although
analytic derivation of N(Q, w) is restricted to the region 0 < Q < kg |, the expression of the
(right-moving) two-holon plus one-antiholon contribution can be extended to the integration
range shown in equation (A.4).

Appendix C. Static structure factors

We consider the static structure factors S**(Q) and N(Q). There are several ways to obtain
these quantities. If one knows the dynamical structure factors $**(Q, w) and N(Q, w), then the
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Table B2. Comparison between analytic results and numerical ones [12] for (N, Ny, N4, N}) =

(16,2, 11, 3).
(Xs1, As25 Aa) o/t o/t I, (analytic) I, (numeric)
(1,0, 1) x %(:0.539 744)  3(0.03571428) 0.035714 172
2,0, 1) : %(:0.771 063)  Z(~0.057142857)  0.057 142144
1,1,2) %(:1.2337) 35(=0.02678571)  0.026 785570
3
8
1,1,3) % (2.08187)  53;(~0.022321428)  0.022321422
1
2
1,1,4) %(:3.084 25)  25(~0.019642857)  0.019642881
5
3 o ...
(1,1,5) 3T (~4.24085) % (~0.01785714)  0.017857178

static structure factors can be obtained by integration over w. Gebhard and Vollhardt calculated
the static structure factors for m = 0, from the Gutzwiller wavefunction [43]. For general m,
Forrester derived the analytic expressions of the equal-time two-point correlation functions
[44, 45]7. In the following, we obtain the static structure factors by Fourier transformation of
these equal-time two-point correlation functions.

The equal-time two-point correlation functions are defined by C**(x) = (0|S%5§]0) and
C™(x) = (0|nyno|0). They are expressed as follows,

2 = 72

Cuny = T T L 2, (4 “d (oh|
(x)_T R —[ss(x)] (ass(x))/o us_(u) |, (C.D

d X
C™Mx) =i + (1 — )8,.0+ (1 — 8x.0) |:—[sc(x)]2 — (d—sc(x)) / du s_(u)i| : (C.2)
X 0
where s_(x) is s_(x) = s5(x) — sc(x). s4(x) (¢ = c and s) are given by
S (1) = S tet (C.3)
TX
By Fourier transformation we obtain the analytic expressions of $%*(Q) and N(Q). Taking

into account of the Umklapp process, we obtain [45]

2 s — Uc
$%(Q) = % +81(0) + S;21 — Q) +81,(Q) + S1, 27 — Q),

N(Q) = % + N (Q)+Ni2m — Q)+ Ny (Q) + Niy 2 — Q),

for momentum 0 < Q < 2x. The S;(Q) is given by

S,(0) =2 fo " dx cos 0x [—%[ssm]z + }1 (%ssu)) /0 " du ss(u)]

=9(2US—Q)|:Q_—21)S—2111'1—2], (C.4)

4 8 Vg

7 In [44], the normalization factors are different. When the spin correlation is divided into C%(x) = CMh(x)/4 +
CPh(x) + CPP(x), the correlation functions CM™(x), C*(x) and C*"(x) correspond to pghw(x), Pophoy (x) and
pfh 14 (x) in [44], respectively. Tractable expressions for the correlation functions were derived by Kuramoto [45].
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where 6(x) is 6(x) = 1 for positive x, and O otherwise. This contribution has the same form
as the level-level correlation of the random matrices for symplectic ensembles [23, 46, 47].
In fact, the S**(Q) of the Haldane—Shastry model can be expressed by vs/(27) + S;(Q) +
S;2m — Q) [48]. The S;;(Q) contributes for finite hole doping (77 < 1), which is given by

S11(0) = —% /Oodx cos Qx (%ss(x)) /X du s.(u)
0 0

e for 0 < 0 < w5 — v,
4
= M+gln Q- , for vy — v. < QO < Vs + v, (C5)
8 8 Ve
0, for Q > vg + ve.

The divergence at Q = nw(1 — m) in S;(Q) is removed by hole doping. The static spin
structure factor has the same form for the Haldane—Shastry model in the region Q < 2kg .
This region contains ‘Q < min[zm, kg |]’, where the S%(Q, w) of the 1/ 72 supersymmetric
t—J model has the same form as that of the Haldane—Shastry model. For the momentum
0 < Q < min[nm, kg, ], the w-integration of the S**(Q, w) (see equation (4)) reproduces the
above expression.
Next we consider the static charge structure factor N(Q). The N;(Q) is given by
oo o0
Ni(Q) = 2/ dx cos Qx [—[SC(X)]2 - <%SC(X)> / du Sc(u)i|
0 X
142
+ =1, for 0 < Q < 2v,,
= e (C.6)
—_—, for 2v. < Q.

This term has the same form as the level-level correlation of the random matrices for orthogonal
ensembles [46, 47]. In fact, the static structure factor of the Sutherland model with coupling
parameter 8 = 1/2 is given by v./m + N;(Q) [23]. The N;;(Q) is given by

N (Q) = 2/00 dx cos Ox <isc(x)> /oodu ss(u)
0 dx X

0, for 0 < Q < vs — v,
0 0+ 0 — v+ 1,
_l - 5 f s < <§+ 5
I n . e or v — Ve < QO < vs+ v (C.7)
Uc 0 0+

for QO > vs + v..

For 0 < Q < kg, the w-integration of the N(Q, w) (see equation (A.4)) reproduces the
above expression.

We can rewrite S**(Q) and N(Q) more explicitly. Because of the reflection symmetry
against Q = m, it is enough to consider Q < m. For convenience, we define the following
functions:

$,(0) X xl 1—m—x

x)=-——1In ,

! 4 8 1—m

S0u () ﬁ—ﬁz+x xl 1—n

a_x: — — —1In — s

> 8§ '8 8 l1l-m
m x m—1+x 1 1+m—x

Su(x) == —=1In - - — — 1,
2 8 1+m—x 4 1—m
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1 1
(a)
g 12 R (d)
)
1/3 () (¢) ¢ (e)
0 9 PV
0
0 1 0 1223 1

n

Figure C1. The shaded region shows the permissible one (0 < 7 < 1 and 0 < m < 71) of
the (72, m) space in the 7~/ model. This region can be classified into six regions with different

expressions of S¥*(Q) (left) and N (Q) (right).

Sy = Tl DT | L2
4 4 8 1—m
_ _ _ _ (C.8)
S3h(x)_n+3m_£ fln 1+mjx lln 1+mjx ’
8 8§ 8 1—n 4 1—m
Suu(x) = 7] 2r71+1’
4
n+2m—1 x m—1+x 1 1+m—x
S0 = = — g T 1—m |’
m 1 1—n
Sac(x) = Z—Zlnl_m.
The expressions of $%*(Q) can classified into six cases (a)—(f) (see figure C1 (left)).
(@) Whenm > 1/2, we have
S1(Q/m), for 0 < Q < w(n — m),
i So4 ), formr(n—m) < O<7@2—n—m),
Q= riom.  fon@ eI, 9
S1a(Q/70), for 2z (1 —m) < Q < 7.
(b) Whenm < 1/2andm > —i/3 +2/3, we have
S1(0/70), for 0 < Q < 7(fi — m),
S ), formm—m) <O <n2—n—m),
$7(0) = Si:gg;n;, for T[E2 —n )—nﬁ)Qg 0 (g 2rm, : (C.10)
Sap(Q/m), for 2nm < Q < m.
(c) Whenm < —n/3+2/3,m > —in+ 1 andm > 7ii/3, we have
S1(Q/m), for 0 < Q < w(n —m),
Sra ), formr(m —m) < O < 2nm,
$7(0) = s3b((QQ//n)), for 2:511-1 < é gg(z — 7 — ), (C.11)
Sap(Q/7), formr(2—n—m) < Q<.
(d) Whenm < —nn+ 1 and m > 7i/3, we have
S1(Q/m), for 0 < Q < w(n —m),
S2a ), formr(m —m) < O < 2nm,
$7(0) = S;((QQ//n)), for 275;1-1 < é <§(ﬁ +1m), (C.12)
S4.(Q /1), formr(n+m) < Q < 7.
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(e) Whenm < —n+ 1 and m < 71/3, we have

S1(Q/m), for 0 < Q < 2nm,
S ), for2nm < Q < (@ —m),
§HQ) = Sﬁg;n; for (i — r?gé Q(< n(ﬁ)+ m), (.13
S4c.(Q /1), form(i+m) < Q < 7.
(f) Whenm > —in+ 1 and m < /3, we have
S1(Q/m), for 0 < Q < 2nm,
i S ), for2nm < Q < 7w —m),
S =m0 €A (19
Sap(Q/7), formr2—-n—-m)< Q<.
To describe N (Q) as well, we define the following functions:
X l—n+x
M =x=g =5 )
Nag(x) = =M 2 2 120
2 2 2 1—m
B n—1+x
Nyp(x) =2 —2n+ =1In —
l—7n+x
l+i—x ‘ l+ii—x
N3, (x)=—m+x — —1In — | +1 — 1,
1-— 1—m
_ _ (C.15)
Nyp) =2 —Sq— DX XAzl
2 2 2 2 1—m
Nag(x) = 27 — i +1In —~,
—m
Nap() =2 — 27 — i+ Sqn |14 ’”"__x ,
2 1 —X 1—m
Nie(x) =1 —n.
The expressions of N(Q) can be classified into six cases (a)—(f) (see figure C1 (right)).
(a) When 7z < 1/2, we have
Ni(Q/m), for 0 < Q < w(n —m),
Ny, ), form(m—m) < O <xw(n+m),
N(Q) = N3C,Eg;n;, for JTEfl +r7z))< QQ< 2n(ﬁ, : (C.16)
Nyt (Q/7), for 2nin < Q < 7.
(b) When#n > 1/2 and m < —37 + 2, we have
Ni(Q/m), for 0 < @ < m(n —m),
Ny, ), formm—m) < O <a(n+m),
N(Q) = N;Eg;n;, for nEr’z +n'1))< QQ< 271((1 - ﬁ)), (C.17)
Nap(Q/7), for2z(l1 —n) < Q0 < 7.
(c) Whenm >3n—2,m < —n+1and m > —3n + 2, we have
Ni(Q/m), for 0 < Q < w(n —m),
Ny, ), formr(m —m) < 0 <2n(1 —n),
MO =g, foran(- 1< 0 < e (€19
Nup(Q/7), formr(a+m) < Q<.
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(d) Whenm > —in+ 1 and m > 3in — 2, we have
Ni(Q/m), for 0 < @ < m(n —m),
_ ) N2u(Q/7), form(n —m) < Q < 2n(l —n),
MO =10 Nyco/m).  for2n(l—i) < 0 < w@— it — i), (C19
Nie(Q/m),  form@—ii—m) < Q<.
(e) Whenm > —n+ 1 and m < 3n — 2, we have
Ni(Q/m), for 0 < 0 <2n(1 —n),
N0y, for 2wl =) < Q < 7@ — ),
NO=\ Ny 0/m).  formi—m) < 0 <7x@—7i — i), (€20
N (Q/7), form@2—n—im) < Q < 7.
() Whenm < —n+ 1 and m < 3in — 2, we have
Ni(Q/m), for 0 < Q <27 (1 —n),
_ ) Nw(Q/m), for 2z (1 —n) < Q < w(7 —m),
NO=\ Ny 0/m).  formi—m) < 0 <n+m), (2D
Nup(Q/7), form(a+m) < Q <.
In the limit m — 0, the above expressions of S**(Q) and N(Q) reproduce the results
in [43].
References

[1]
(2]
[3]
(4]
[5]
[6]
[71
(8]
[9]
(10]
[11]
[12]
[13]

[14]
[15]
[16]
(171
(18]
[19]
[20]
(21]
(22]
(23]
[24]
[25]
[26]
(27]
(28]
[29]
(30]

Kuramoto Y and Yokoyama H 1991 Phys. Rev. Lett. 67 1338

Haldane F D M 1988 Phys. Rev. Lett. 60 635

Shastry B S 1988 Phys. Rev. Lett. 60 639

Kuramoto Y and Kato Y 1995 J. Phys. Soc. Japan 64 4518

Kato Y and Kuramoto Y 1996 J. Phys. Soc. Japan 65 1622

Kawakami N 1992 Phys. Rev. B 45 7525

Haldane F D M and Zirnbauer M R 1993 Phys. Rev. Lett. 71 4055

Yamamoto T, Saiga Y, Arikawa M and Kuramoto Y 2000 Phys. Rev. Lett. 84 1308
Yamamoto T, Saiga Y, Arikawa M and Kuramoto K 2000 J. Phys. Soc. Japan 69 900
Saiga Y and Kuramoto Y 1999 J. Phys. Soc. Japan 68 3631

Arikawa M, Yamamoto T, Saiga Y and Kuramoto Y 2004 J. Phys. Soc. Japan 73 808
Saiga Y and Kuramoto Y 2000 J. Phys. Soc. Japan 69 3917

Talstra J C and Haldane F D M 1994 Phys. Rev. B 50 6889

Talstra J C and Haldane F D M 1996 Phys. Rev. B 54 12594 (erratum)

Arikawa M, Saiga Y, Yamamoto T and Kuramoto Y 2000 Phys. B 281-282 823
Polychronakos A 1990 Phys. Rev. Lett. 70 2329

Sutherland B and Shastry B S 1993 Phys. Rev. Lett. 71 5

Arikawa M, Yamamoto T, Saiga Y and Kuramoto Y 1999 J. Phys. Soc. Japan 68 3782
Peysson S 2003 J. Phys. A: Math. Gen. 36 7233

Gangardt D M and Kamenev A 2001 Nucl. Phys. B 610 578

Sutherland B 1971 J. Math. Phys. 12 246

Sutherland B 1971 J. Math. Phys. 12 251

Sutherland B 1971 Phys. Rev. A 42019

Sutherland B 1972 Phys. Rev. A 5 1372

Kato Y and Kuramoto Y 1995 Phys. Rev. Lett. 74 1222

Macdonald I G 1995 Symmetric Functions and Hall Polynomials 2nd edn (Oxford: Oxford University Press)
Kato Y and Yamamoto T 1998 J. Phys. A: Math. Gen. 31 9171

Arikawa M, Yamamoto T, Saiga Y and Kuramoto Y 2004 Nucl. Phys. B 702 380
Dunkl C F 1989 Trans. Am. Math. Soc. 301 167

Cherednik I V 1991 Inv. Math. 106 411

Opdam E 1995 Acta. Math. 175 75


http://dx.doi.org/10.1103/PhysRevLett.67.1338
http://dx.doi.org/10.1103/PhysRevLett.60.635
http://dx.doi.org/10.1103/PhysRevLett.60.639
http://dx.doi.org/10.1143/JPSJ.64.4518
http://dx.doi.org/10.1143/JPSJ.65.1622
http://dx.doi.org/10.1103/PhysRevB.45.7525
http://dx.doi.org/10.1103/PhysRevLett.71.4055
http://dx.doi.org/10.1103/PhysRevLett.84.1308
http://dx.doi.org/10.1143/JPSJ.69.900
http://dx.doi.org/10.1143/JPSJ.68.3631
http://dx.doi.org/10.1143/JPSJ.73.808
http://dx.doi.org/10.1143/JPSJ.69.3917
http://dx.doi.org/10.1103/PhysRevB.50.6889
http://dx.doi.org/10.1103/PhysRevB.54.12594
http://dx.doi.org/10.1016/S0921-4526(99)00911-4
http://dx.doi.org/10.1103/PhysRevLett.70.2329
http://dx.doi.org/10.1103/PhysRevLett.71.5
http://dx.doi.org/10.1143/JPSJ.68.3782
http://dx.doi.org/10.1088/0305-4470/36/26/302
http://dx.doi.org/10.1016/S0550-3213(01)00326-1
http://dx.doi.org/10.1063/1.1665584
http://dx.doi.org/10.1063/1.1665585
http://dx.doi.org/10.1103/PhysRevA.4.2019
http://dx.doi.org/10.1103/PhysRevA.5.1372
http://dx.doi.org/10.1103/PhysRevLett.74.1222
http://dx.doi.org/10.1088/0305-4470/31/46/008
http://dx.doi.org/10.1016/j.nuclphysb.2004.09.012
http://dx.doi.org/10.2307/2001022
http://dx.doi.org/10.1007/BF01243918
http://dx.doi.org/10.1007/BF02392487

Exact spin dynamics of the 1/r> SUSY -/ model in a magnetic field 10621

[31] Macdonald I G 1997 Sém. Bourbaki 47 797
[32] Baker T H and Forrester P J 1997 Nucl. Phys. B 492 682
[33] Dunkl C F 1998 Commun. Math. Phys. 197 451

[34] Baker T H, Dunkl C F and Forrester P J 2000 Calogero-Moser-Sutherland Models ed J F van Diejen and
L Vinet (Berlin: Springer)

[35] Takemura K and Uglov D 1997 J. Phys. A: Math. Gen. 30 3685
[36] HaZ N C and Haldane F D M 1994 Phys. Rev. Lett. 73 2887
Ha Z N C and Haldane F D M 1995 Phys. Rev. Lett. 74 3501 (erratum)
[37] SaigaY, Kato Y and Kuramoto Y 1996 J. Phys. Soc. Japan 65 2361
[38] Arikawa M, Saiga Y and Kuramoto Y 2001 Phys. Rev. Lett. 86 3096
[39] Kato Y 1998 Phys. Rev. Lett. 81 5402
[40] Hanlon P J, Stanley R P and Stembridge J R 1992 Contemp. Math. 138 151
[41] Lesage F, Pasquier V and Serban D 1995 Nucl. Phys. B 435 585
[42] HaZ N C 1995 Nucl. Phys. B 435 604
[43] Gebhard F and Vollhardt D 1988 Phys. Rev. B 38 6911
[44] Forrester P J 1995 Phys. Lett. A 196 353
[45] Kuramoto Y 2005 Private communication
[46] Mehta M L 1991 Random Matrices 2nd edn (San Diego, CA: Academic)
[47] Efetov K 1997 Supersymmetry in Disorder and Chaos (Cambridge: Cambridge University Press)
[48] Mucciolo E R, Shastry B S, Simons B D and Altschuler B L 1994 Phys. Rev. B 49 15197


http://dx.doi.org/10.1016/S0550-3213(97)00112-0
http://dx.doi.org/10.1007/s002200050460
http://dx.doi.org/10.1088/0305-4470/30/10/039
http://dx.doi.org/10.1103/PhysRevLett.73.2887
http://dx.doi.org/10.1103/PhysRevLett.74.3501
http://dx.doi.org/10.1143/JPSJ.65.2361
http://dx.doi.org/10.1103/PhysRevLett.86.3096
http://dx.doi.org/10.1103/PhysRevLett.81.5402
http://dx.doi.org/10.1016/0550-3213(94)00453-L
http://dx.doi.org/10.1016/0550-3213(94)00537-O
http://dx.doi.org/10.1103/PhysRevB.38.6911
http://dx.doi.org/10.1016/0375-9601(94)00872-M
http://dx.doi.org/10.1103/PhysRevB.49.15197

	1. Introduction
	2. Sutherland model with
	2.1. Notation
	2.2. Sutherland model and Jack polynomials

	3. Matrix element
	3.1. Small momentum region
	3.2. Replica type technique

	4. Results
	5. Summary
	Acknowledgments
	Appendix A. Dynamical charge structure factor
	Appendix B. Comparison with numerical results
	Appendix C. Static structure factors
	References

